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ABSTRACT

Recent advances in the e-commerce fashion industry have led to

an exploration of novel ways to enhance buyer experience via im-

proved personalization. Predicting a proper size for an item to rec-

ommend is an important personalization challenge, and is being

studied in this work. Earlier works in this field either focused on

modeling explicit buyer fitment feedback or modeling of only a

single aspect of the problem (e.g., specific category, brand, etc.).

More recent works proposed richer models, either content-based

or sequence-based, better accounting for content-based aspects of

the problem or better modeling the buyer’s online journey. How-

ever, both these approaches fail in certain scenarios: either when

encountering unseen items (sequence-based models) or when en-

countering new users (content-based models).

To address the aforementioned gaps, we propose PreSizE – a

novel deep learning framework which utilizes Transformers for

accurate size prediction. PreSizE models the effect of both content-

based attributes, such as brand and category, and the buyer’s pur-

chase history on her size preferences. Using an extensive set of

experiments on a large-scale e-commerce dataset, we demonstrate

that PreSizE is capable of achieving superior prediction performance

compared to previous state-of-the-art baselines. By encoding item

attributes, PreSizE better handles cold-start caseswith unseen items,

and cases where buyers have little past purchase data. As a proof

of concept, we demonstrate that size predictions made by PreSizE

can be effectively integrated into an existing production recom-

mender system, yielding very effective features and significantly

improving recommendations.
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Date Category Size

2019-12 Baby/Toddler:Outfits & Sets 3-6 months

2020-05 Baby/Toddler:Outfits & Sets 12-18 months

2020-05 Baby/Toddler:Outfits & Sets 3T

2020-05 Baby/Toddler:Tops & T-Shirts 24 months

2020-05 Baby/Toddler:Outfits & Sets 24 months

Figure 1: Example of a dynamically changing size preference

over a course of six months based on a given buyer’s pur-

chase history in toddler categories.

1 INTRODUCTION

The growth of the e-commerce fashion industry has driven for-

ward a large body of research on new personalization problems.

Among such problems is size prediction, which is the focus of our

work.

Correctly predicting the size preferences of e-commerce buy-

ers when recommending items can improve buying experience and

result in less item returns. However, predicting the right size in e-

commerce is not a trivial task for multiple reasons. First, the notion

of size by itself is ambiguous due to the fact that there are different

sizing schemes (e.g., EU, UK, US, etc.), different scales (e.g., numeri-

cal, (S,. . .,XL), (A,. . .,DD), etc.) and different usages of the term size

(‘shoe size’, ‘bottoms size’, ‘hosiery size’, ‘cup size’, etc.).

In addition, there are no clear size conversion charts, and size may

vary between different brands (e.g., UK size 10 can be converted to

both US size 6 and US size 8, depending on the brand). Moreover,

buyers’ own size preferences may change over time. Figure 1 illus-

trates such a real example taken from our data. In this example, the

buyer’s size preference for kids clothing has changed over a period

of six months. As this example demonstrates, size preferences can

be quite dynamic and even dramatically change over a short course

of time. Lastly, a single account may be used by multiple buyers,

having a multitude of size preferences, making the prediction task

even harder.

The size prediction task has been addressed by several previous

works in recent years and various solutions have been suggested.

Earlier works have either relied on explicit buyers’ fitment feed-

back or have trained specific prediction models that cover only a

single aspect of the problem (e.g., a single brand, category, buyer

segment, etc.). Yet, in a real-world e-commerce setting, buyers’ fit-

ment feedback is usually scarce; therefore, we utilize implicit feed-

back based on buyers’ shopping journeys instead. Additionally, train-

ing a model for every brand or category does not scale well, con-

sidering the variety of merchandise that may be offered online.

More recent work addressed a more realistic setup and proposed

methods to model multiple aspects of the problem. However, these
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works still suffer from cold-start issues, lacking the ability to han-

dle either new buyers or novel items. Finally, almost all previous

works do not explicitly model the temporality of a buyer’s shop-

ping journey. Such a journey is commonly characterized by a se-

quence of items that were purchased by the buyer prior to the next

item purchase time whose size we wish to predict.

Following previous work, we formulate the size prediction task

as a multi-class classification problem over all size values which ap-

pear in the dataset. We propose PreSizE1 – a novel size prediction

framework that utilizes Transformers [19] in two main ways. First,

we use a Transformer to capture the relationship between various

item attributes (e.g., brand, category, etc.) and its purchased size.

This Transformer basically co-embeds each item’s size property

with its associated attributes. This in turn, allows to address cold-

start cases, where learned size and attribute embeddings can be

shared among items (and buyers) for better handling novel (un-

seen) items. Second, we utilize a second Transformer layer which

captures the relationship between previous item purchases in a

given buyer’s history and the size preference of the next item being

bought.

Most previous works have utilized relatively small scale public

datasets that include explicit buyer’s fitment feedback (e.g., Small,

Fit, Large). Others have utilized in-house datasets while focusing

only on specific item subsets (e.g., specific category or buyer seg-

ment). Instead, in this work,we use a proprietary large-scale dataset

from the eBay e-commerce website, which is based on implicit

feedback obtained from buyer purchase histories. Our dataset is

unique, having both strong buyer-item usage sparsity and loose

limitations on the sellers’ input. Overall, we evaluate PreSizE over

items with rich attributes, spanning over multitude of departments

(e.g., ‘Men’s’, ‘Women’s’, etc.), item types (e.g., ‘Tops’, ‘Bottoms’,

etc.) and buyer account types (e.g., ‘Single Gender’, ‘Mixed Age’,

etc.).

We evaluate PreSizE against previous state-of-the-art baselines

and demonstrate its superior size prediction quality.Moreover, items

in our dataset may have several size options and the size relevant to

a specific buyer may not always be available. Using another large-

scale eBay dataset, we further demonstrate that, PreSizE size pre-

dictions can be utilized as features for enhanced personalization,

helping to capture the likelihood that an item will have available

inventory with the relevant size for a given buyer. By doing so, we

improve an existing production item recommendation service by

a significant margin.

Overall, our contributions can be summarized as follows:

• We present PreSizE– a novel approach to predict buyers’

size preferences in e-commerce based on item purchase his-

tories.

• Using a large-scale dataset from eBay website, we demon-

strate the merits of PreSizE, significantly outperforming all

previous approaches which tackled the same task.

• We show the impact of size prediction on a real item recom-

mendation service deployed on the eBay website.

1PreSizE stands for “Predicting Size in E-Commerce”.

2 RELATED WORK

The size prediction task is a relatively new task and has been pre-

viously studied by several related works [4, 7, 8, 11, 12, 14–17]. We

next briefly review related work, further emphasizing the main dif-

ferences from our work.

A first line of related works [7, 12, 14, 15] focused on predict-

ing size fitment from explicit buyer’s fit feedback (e.g., Small, Fit,

Large). Among these works, Sembium et al. [14] have cast the size

prediction task as an ordinal regression problem,where differences

between true buyer and item sizeswere fed into a linearmodel. The

same authors [15] have extended their solution using a Bayesian

regression model with ordinal categories. Guigourès et al. [7] have

proposed a hierarchical Bayesian model that learns the joint proba-

bility of a buyer purchasing a given item size and its fitment. Misra

et al. [12] have utilized a combination of ordinal regression and

metric learning for better handling of class imbalance.

A second line of related works, sharing a similar problem set-

ting, are those that have utilized attributes of buyers and their pur-

chased items (e.g., category, brand, chest size, length, etc.) as im-

plicit feedback for size prediction [1, 4, 11, 16, 17]. Such works are

motivated by the fact that, explicit customer fit feedback is usually

noisy (e.g., based on customer free text feedback on returned items)

and sparse.

Among these works, Dogani et al. [4] have proposed the Product

Size Embedding (PSE) neural collaborative filtering model. Within

this model, item embeddings were learned for each possible size.

Using an asymmetric modeling approach, buyers were then rep-

resented by items in their purchase history. Abdulla and Borar [1]

trained a classifier for fitment prediction using a combination of ob-

servable and latent buyer and item features. Latent features were

obtained using a skip-grammodel learned over buyer purchase his-

tories. The same model was extended in [17] for footwear size rec-

ommendation and enhanced with a probabilistic graphical model

that considered brand similarities.

A notable limitation of all the aforementioned works, is the re-

quirement to train a model for a specific category, brand or size,

which does not scale well in real e-commerce settings, where a

high variety of merchandise is common. Two recent works have

further tried to overcome this limitation [11, 16]. Sheikh et al. [16]

have proposed SFNet - a deep-learning based content-collaborative

model for personalized size and fit recommendation. Similar to our

work, the size prediction task was modeled as a multi-class clas-

sification problem trained over historical buyer-item interactions.

Buyer and item latent embeddings were derived using a combi-

nation of embedding content features and applying feed-forward

layers with skip connections. Lasserre et al. [11] have utilized a

meta-learning approach, where buyers were represented by items

in their purchase history and their attributes. Using embedded lin-

ear regression, both items and their purchased sizes were mapped

into a latent space where they share a strong linear dependence.

Yet, both [11, 16] and previously mentioned works so far do not

consider the sequence of item purchase events in a given buyer’s

history. As was illustrate in Figure 1, such modeling can allow

to capture additional sequential patterns that better represent the

buyer’s size preferences.



In recent years, Transformers [19] have been highly adopted

for their success in prediction over sequential tasks. Transform-

ers have been initially applied with a great success in NLP tasks

(e.g., BERT [3], GPT [13] and XLNet [21]). In the recommenda-

tion systems domain, Transformers have been primarily applied

in sequence-based recommendation tasks [2, 6, 18, 20]. Given a se-

quence of item identities in the buyer’s history, Transformers were

utilized for predicting the identity of the next buyer-item interac-

tion. Yet, the goal of such prediction tasks is eminently different

from that of the size prediction task.

To accommodate the sequential dependency in size prediction,

in this work, we also utilize Transformers. Similar to our approach,

Hajjar and Zhao [8] have recently utilized Transformers to encode

the sequence of buyer’s purchases based on purchased item iden-

tities and their sizes. Yet no additional buyer or item attributes

are considered in [8], which limits generalization into never-seen-

before items (cold-start). In contrast,we use additional Transformer

layers to generate item embeddings from their attributes without

relying on item-ids. Using such additional Transformer layers al-

lows to better capture the effect of item aspects (e.g., title, category,

brand, etc.) on purchased item sizes and generalize into unseen

items.

Finally, we further demonstrate the utilization of size prediction

as an important feature for enhanced personalization, by training

a recommendation model with size predictions outputted by our

model. To the best of our knowledge, no prior work has explored

this research direction.

3 SIZE PREDICTION FRAMEWORK

In this section we describe the details of our PreSizE size predic-

tion framework. We first formulate the problem as a multi-class

classification problem. We then describe the PreSizE model archi-

tecture and implementation details. We conclude this section with

a short discussion of how PreSizE’s size predictions can be utilized

as features within a downstream item recommendation task.

3.1 Problem Formulation

Let * denote a set of buyers and let � denote a set of items. For a

given buyer D ∈ * and her previously purchased items �D (here-

inafter referred to as the buyer’s purchase history), we formulate

the size prediction problem as estimating % (B |8, �D), i.e., the proba-

bility that the next item 8 ∈ � that will be purchased by buyer D will

be of size B .

While a size variable B can be thought of as a continuous or

ordered variable, in practice, sellers may use a mixture of overlap-

ping, incompatible and discrete measurement systems which are

not easily interpreted. As an example, lets consider numeric US

and UK clothing sizes. Both size systems are ranging from 0 to low

20’s. However, some conversion tables will show that a UK size 10

should be converted to a US size 6, whiles others to 8. Sellers often

do not specify the size system they use in a structured way, and

even when they do, universal conversion tables themselves often

disagree. In addition, enforcing even a partial ordering on sizes can

be labour intensive and error prone.

To overcome such sizing complications, we treat size B as a cate-

gorical variable. We collect sizemeasurements as strings, assigning

a unique id to each unique string. By using this approach, our size

prediction problem becomes a multi-class classification problem.

We solve the size prediction problem by defining a model 5 ,

which is implemented in this work as a deep neural-network. Our

goal, is to train 5 , such that the difference between the model’s size

prediction and the observed size is minimized.

Formally, during train time, for a given item 8 ∈ �D , let �D [≺8 ]

denote the sequence of items purchased by buyerD prior to item 8’s

purchase time. Let ~̂B8 = 5 (�D [≺8 ], 8) and ~B8 further denote item

8’s estimated and ground truth labels respectively.

We aim at minimizing the overall miss-classification loss:

!>BB (* , � ) =
∑

D∈*

∑

8 ∈�D

!(~̂B8 , ~B8 ), (1)

where !(~̂B8 , ~B8 ) is calculated as the cross-entropy loss:

!(~̂B8 , ~B8 ) = −
∑

9

~B8 [ 9] log(~̂B8 [ 9]) (2)

3.2 Model Architecture Overview

The architecture of the PreSizE deep neural-network is illustrated

in Figure 2. The network is composed of four main steps. In the

first step, we embed each item in the buyer’s purchase history and

obtain its dense feature representation (embedding). Then, using

the item embeddings along with their purchase times, we obtain a

dense feature representation of thewhole buyer’s purchase history.

In parallel, we produce a context embedding of the target item for

size prediction. Finally, both the buyer’s purchase history and con-

text embeddings are fed into a classifier network which outputs

the size (class) probability estimates.

During training, the buyer’s (purchase history) embedding sub-

network learns to extract features describing the general size pref-

erences of a particular buyer. On the other hand, the context em-

bedding sub-network learns to extract features that allow themodel

to adjust such general size preferences to a particular item of inter-

est. In this work, we obtain the various embeddings using Trans-

formers [19], whose usage details will be detailed in Section 3.4.

A notable property of our architecture is that, while our model

is trained end-to-end, the item embedding computation is indepen-

dent for each item. Since most of the computation is done during

item embedding, we can pre-compute such embeddings in an of-

fline process. Then, during inference, we fetch relevant item em-

beddings and only compute the buyer and context embeddings on-

the-fly. This is particularly attractive in a production environment,

since inference can be done efficiently online without compromis-

ing on up-to-date buyer purchase histories.

3.3 Handling Data Sparsity

A distinctive characteristic of our setting is high sparsity of buyer

purchase histories and of the purchased items themselves (as will

be further discussed in Section 4.1.1). This fact entails that, during

test time, we are likely to encounter many little-seen buyers and

never-seen-before items. Such a setting has challenged previously

proposedmodels [8] that rely on embedding item ids and buyer ids,

and require enough training examples per item and buyer to learn

useful latent features. To address this challenge, we encourage our
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Figure 2: Overview of PreSizE architecture. (1) Item Transformer is used to obtain a representation of each item in the buyer’s

purchase history. (2) Second Transformer is used to obtain a representation of the buyer’s entire purchase history. (3) Context

Transformer (weight shared with Item Transformer) is used to represent the target item. (4) Classifier network is used to

predict the most likely purchased size of the target item given buyer’s purchase history.

model to generalize based on explicit content features of items and

buyers, rather than learning latent features directly. We, therefore,

represent each buyer D ∈ * by the sequence of purchased items in

�D = ((81, 31), . . . , (8 9 , 3 9 ), . . .), ordered by their purchase times 3 9 .

Each item 8 ∈ �D is further represented by its set of attribute name-

value pairs: 8 = {(=81, E81), . . . , (=8; , E8; )}. We assume that the set of

all possible attribute names is fixed,while attribute valuesmay con-

sist of arbitrary string lengths. In practice, our attributes include

the item’s title, category, size measurements and 11 other fea-

tures such as brand, country of manufacture and department.

More details on the exact features will be discussed in Section 4.1.1.

3.4 Model Implementation

We next describe in detail the implementation of the various mod-

ules in the PreSizE neural-network.

3.4.1 Item Embedding. We first produce a dense feature represen-

tation of each item in the buyer’s purchase history. A schema of

this step is depicted in Figure 3. Since we represent an item by its

set of name-value attributes, and the length of attribute values may

vary, we first tokenize the attibutes. For a given attribute value

E , let C1, . . . , C |E | denote its sequence of token ids. We further ex-

tend each token id with its relative position 9 ∈ [1, . . . , |E |] and

the associated attribute-name id = to obtain a series of triplets:

Token Ids [CLS]

[PAD]

[PAD]

+

+

Item Transformer

Item 
Embedding

White

Title

0

+

+

Cotton

Title

1

+

+

T-shirt

Title

2

+

+

XX-

Size

0

+

+

Large

Size

1

+

+

Men’s

Category

0

+

+

T-shirts

Category

1

+

+

Attribute 
Name Ids

Position Ids

Figure 3: Generating content-based item embeddings. An

item is represented as a set of attribute name-value pairs.

Each attribute value is separately tokenized. Token se-

quences are then concatenated and fed to a Transformer

along with positional and attribute name id embeddings.

(C1, 1, =) . . . (C |E |, |E |, =). We then concatenate all triplet sequences

to a single sequence describing the entire item. We use an embed-

ding layer to embed each component of a given triplet (C 9 , 9, =) into

corresponding dense vectors ℎC 9 , ℎ 9 and ℎ= . The triplet’s embed-

ding is then obtained by summing up its sub-components’ embed-

dings (i.e., ℎC 9 +ℎ 9 +ℎ=). Following standard practice, we prepend a

‘[CLS]’ token embedding to this sequence and feed it into a stacked

Transformer layer. We consider the Transformer’s output corre-

sponding to the ‘[CLS]’ token as the resulting item’s embedding.

A Transformer is a widely used state-of-the-art attention-based

model for processing textual input. We omit a detailed description

of the Transformer model for brevity. For a detailed description,

the reader is kindly referred to [19]. However, a noteworthy prop-

erty of the attention model is that it is invariant to input order and

requires positional embeddings to know the order of tokens in a

sequence. We use this to our advantage by providing positional

embedding relative to each attribute-value sequence only, supple-

mented by attribute (name) id embeddings. This allows our model

to know which attribute each token belongs to and the ordering of

tokenswithin each attribute value, but does not imply any artificial

ordering of the attributes.

3.4.2 Buyer Embedding. In the second step of our model we ob-

tain a representation of the buyer’s purchase history �D . To this

end, we introduce temporal-embeddings so ourmodel is made aware

of the ordering and time-based relevancy of past purchases. To

obtain the temporal embeddings, we devise a simple method that

avoids sparsity, yet allows our model to identify which purchases

are more recent and which are further in the past. For each item

8 ∈ �D , we first compute 3 ′8 = 3A4 5 − 38 : the days that elapsed

between item 8’s purchase time 38 and the current target purchase

time 3A4 5
2. We then compute 5 ;>>A (;>6(3 ′8 )) by rounding down

the log of 3 ′8 and consider this as its temporal id. This formulation

allows the model to consider the scale of time elapsed since item 8’s

purchase time, and therefore its time-based relevancy, while elim-

inating sparsity. We use an embedding layer to turn temporal ids

into dense vectors.

2We note that, during training, the purchase time of the last item in�D is used as the
reference time 3A45 .
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Once we obtain the temporal embedding for each item in�D , we

combine it with the item’s embedding from the previous step by

summing both embeddings together. To obtain the representation

of the whole purchase history, we feed the sequence of the pur-

chased item embeddings into a second stacked Transformer layer.

We further prepend a ‘[CLS]’ token to our sequence and consider

the Transformer’s output corresponding to the ‘[CLS]’ token as

the representation (embedding) of the entire buyer’s purchase his-

tory.

3.4.3 Context Embedding. In the third step, we produce the con-

text (features) representation for the target item. Context features

allow our model to adjust the general size preferences of a given

buyer into a size measurement that fits the particular target item.

In practice, this step is identical to producing item embedding, with

the exception that all the actual size measurements and the title of

the target item aremasked out. This masking is required to prevent

label leakage during training, when our model is optimized to esti-

mate the actual purchased size of the target item. The embedding

and Transformer layers used for this step are weight-shared with

those used in the item embedding step.

3.4.4 Classifier. In the final step, we obtain the size predictions.

Here, we first concatenate the buyer’s purchase history and con-

text embeddings. We then apply a 3-layer feed-forward network

which transforms the concatenated embeddings into class prob-

ability estimates. We use Gaussian Error Linear Unit [9] (GELU)

non-linearities after the first two hidden-layers and a softmax layer

to compute the final class probabilities after the third layer.

3.5 Utilizing Predicted Sizes as Features

We conclude this section by making an observation that, apart

from only predicting the right size of a given target item (for a

given buyer), PreSizE’s predictions can be further utilized as per-

sonalization features for downstream tasks, such as item recom-

mendation. In a recommendation task, we are given a buyer D , and

an item 8 , where 8 can have multiple size options the buyer might

purchase. We are interested in using PreSizE to generate features

describing the likelihood of the available sizes of 8 will fit D’s size

preferences. These features can be then used by a recommender

system to improve its recommendations. We expect such features

to be extremely helpful in cases where item size inventory is only

partial.

To generate such features, we first view the output scores of

PreSizE’s final softmax layer as a probability distribution over the

sizes a buyer is likely to buy of a given item. We then propose

three size-prediction based features, namely: total score, best score

and best rank. The total score feature represents the summation

of PreSizE predictions over the available size inventory, capturing

the probability that at least one size will match the buyer’s pref-

erence. The best score feature is calculated by computing the size

option with maximum PreSizE predicted probability, assuming the

buyer would prefer the best option. Finally, the best rank feature

provides a smoothing over the likelihoods by replacing the score of

the most probable available size with it’s rank among all possible

sizes. As we demonstrate in our experiments (Section 4.4), utiliz-

ing such additional size features within a downstream learning-to-

rank setting, improves item recommendation.

4 EXPERIMENTS

To demonstrate the usefulness of our PreSizE framework, we con-

duct a wide array of experiments on data collected from the eBay e-

commerce website. We start by describing our experimental setup.

We then present our results for themain task of size prediction.We

analyze our results across several important dimensions and per-

form an ablation study. We conclude this section with a proof of

concept, demonstrating the utilization of our size-driven features

for enhancing an existing real eBay item recommendation service.

4.1 Experimental Setup

4.1.1 Dataset. To empirically validate ourmodel,we collect a large-

scale dataset sampled from fashion purchases done between 6/1/2019

and 6/1/2020 on the US domain of eBay website. Our data consists

of over 27M purchases made by 2.7M buyers and spans 210 fashion

categories that include clothing, shoes and accessories categories.

We next describe how we obtain and clean this data.

Since eBay is not a dedicated fashion site, we retain only buyers

with some minimum interest in fashion items – those who have at

least 5 fashion purchases over the given time period. For each item,

we collect a set of attributes listed by the seller. These attributes in-

clude a free-text title (e.g., “Men’s Trainer Sneaker shoes, Sports Gym

Casual Trainers, Outdoor Sneakers”), a category structured as a leaf

in the platform’s category tree (e.g. ‘men:men’s shoes:sneakers’)

and a list of attribute name-value pairs (e.g., ‘department:men’,

‘style:casual’, etc.).

Our platform allows sellers to list arbitrary attribute names and

values. Hence, item attributes in our dataset are semi-structured

with thick (and often noisy) long tails of attribute names and val-

ues. An implication of this is that, while most sellers (65%) list

a general ‘size’ attribute (name), some sellers use a plethora of

other attributes names such as ‘men’s size’, ‘shoe size’, ‘women

shoe size’; each applying to between 0.1% and 5% of our data. To

complicate things further, there is no strict boundary between dif-

ferent attributes. In particular, the ‘size’ attribute conflates with

all other attribute names and often contains more data of specific

size categories (e.g. ‘shoe sizes’) than themore specific attributes

(e.g. ‘shoe size’). We, therefore, keep the general ‘size’ attribute

along with 20 of the most common variations. However, to focus

our experiments, we consider only the general ‘size’ attribute in

our evaluations. Along with the size attributes, we include 11 other

potentially useful attributes such as brand and gender. Table 1 lists

all context attributes, and the percentage of samples they apply to.

A second outcome of our lax, semi-structured data, is having a

long tail of attribute values. In particular the ‘size’ attribute con-

tains over 125K unique strings, most ofwhich are either completely

uninformative (e.g. ‘one size’, ‘not applicable’) or belong to a

plethora of variation and spelling mistakes of common size mea-

surements (e.g. ‘xl’, ‘extra large’, ‘l-large’, ‘32womens’, ‘men

34’). We filter out such noisy values so our evaluations focus on

size personalization, rather than forcing ourmodel to sort out nam-

ing variations of essentially the same size. To facilitate this, we
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Table 1: Context attributes and their coverage (% of samples

they apply to)

Name Coverage Name Coverage

Title 100% Brand 44.0%

Category 100% Occasion 29.7%

Department 74.7% Manufacture Country 22.8%

Brand Type 60.0% Fabric Type 14.1%

Style 59.6% Season 10.7%

Material 53.1% Gender 6.8%

Type 51.8%

first filter a closed list of uninformative strings which do not de-

scribe a specific size measurement (‘one size’, ‘fits all’, ‘not

applicable’ etc.). We next merge abbreviated forms of textual

sizes with their elongated forms, e.g., ‘2xl’, ‘xxl’ and ‘extra extra

large’, as these are very common variations. We then examine

each category and for each attribute keep only unique values that

appear at least 500 times and constitute at least 1% of all the values

within that category. Finally, we retain only purchases where the

purchased item has a size measurement listed by the seller. This

aggressive filter results in removing 22% of our size labels spread

over 10’s of thousands of unique strings, leaving 286 unique size

labels.

Another distinctive feature of our data is a high degree of data

sparsity. We find that 92% of the items are unique, constituting 58%

of all purchases, appear only once within the entire dataset. In ad-

dition, over 78% of our buyers have less than 10 training purchases.

These statistics suggest that during test time our model is likely to

encounter many items it did not see before andmany buyers which

are only observed a few times in the training data.

4.1.2 Baselines. Weevaluate PreSizE against two strong baselines [8,

16] which were previously reported to provide the best perfor-

mance for this task. We further design three heuristic baselines

to compare against PreSizE. All heuristics consider the most gran-

ular category an item belongs to and back-off up the category tree

to less granular categories if we do not have any data for the more

granular category.

• Most Common Value (MCV): This is a simple baseline that

does not do any personalization. MCV returns % (B |2) – the mar-

ginal probability of each size B within a given category 2 . MCV

effectively selects the most common size from the most granular

category of the target item.

•Most Recent Value (MRV): This baseline considers the buyer’s

purchase history and selects themost recently purchased sizewithin

the target item’s category. Adhering to our back-off strategy, we

start by looking at purchases within the most granular category

of the target item, and back-off to less granular categories if the

buyer did not purchase any item from the more granular category.

• Personalized Most Common Value (PMCV): This baseline is

a personalized version of MCV and considers the marginal proba-

bility of each size within the buyer’s purchase history. Similar to

the previous two baselines, PMCV looks only at items purchased

from the same category as the target item and backs-off to less

granular categories if no purchase is found.

• SFNet [16]: This baseline implements a deep neural-network that

learns item and buyer embeddings, which are further joined with

item-based explicit features. To this end, both buyer and item fea-

tures go through a series of non-linear layers with skip connec-

tions. The intermediate embeddings are then concatenated and go

through another series of non-linear layers with skip connections.

Unfortunately, the original SFNet implementation does not han-

dle cold-start cases where a given item does not appear at all in

the training data. Hence, to overcome this limitation, we restrict

SFNet’s item embedding dictionary to include only item ids that

appear least 2 times in our training data and map all other item

ids into a ‘[MISSING]’ embedding. Furthermore, we adjust some

of the hyper-parameters suggested by the authors to ones that

work better for our data. Specifically, we replace all tanh activa-

tions with ReLU activations, increase the embedding dimension to

64, increase the dimensions of the item and buyer pathways to (100,

50, 25) and the combined pathway to (50, 100, 200, 500). We further

remove the L2 regularization, which we found not to be useful for

our data.

• Attention [8]: This baseline uses an encoder-decoder frame-

work based on Transformers [19]. A buyer’s history is represented

as a sequence of item ids, sizes and temporal embeddings that are

fed into an encoder Transformer, and the outputs of this encoder

are then concatenated with the target item id embedding and fed

into a decoder Transformer. Similar to PreSizE, this baseline uses a

Transformer to attend to items in the buyer’s history, yet with the

main difference of not using any explicit content-based features.

As in the case of SFNet, we restrict the item-id dictionary to items

appearing at least twice in the training data.

• Attention+: During our experiments we found that the Atten-

tion baseline on its own does not perform well on our data. We hy-

pothesize this is due to the difficulty of learning implicit features

from our strongly sparse data. To test this hypothesis we replace

item id embeddings used by the Attention baseline with category

embeddings. This baseline can be viewed as a hybrid between Pre-

SizE and the Attention model. We denote this alternative baseline

as Attention+ in our experiments.

4.1.3 Training and Hyper-parameters. PreSizE requires a signifi-

cant number of hyper-parameters to tune owing to the complex

nature of our data and usage of Transformers. During our pre-

liminary experiments with the validation set, we found that ex-

cept the choice of embedding size and learning rate, other hyper-

parameters have little effect on our results. We, therefore, leave all

other hyper-parameters at their implementation defaults or coarsely

tuned.

Tokenization. Throughout our experiments, we use theHugging-

Face3 implementation of the Byte-Pair Encoding (BPE) tokenizer

to tokenize our strings. BPE is a state-of-the-art tokenizer exten-

sively used in conjecture with neural-networks for its ability to

avoid out-of-vocabulary tokens by breaking down unknownwords

to smaller n-grams. After tokenization, we either truncate or use

a ‘[PAD]’ token to pad all sequences to 45 tokens, as we found

this length suffice for 97% of items and provides a good perfor-

mance/efficiency trade-off. Unless otherwise stated, we use up to

25most recent purchases in a buyer’s history, as we found this to be

3https://huggingface.co/



Table 2: Comparison of PreSizE performance to the base-

lines on the size prediction task. PreSizE outperforms all

baselines. All bold results are statistically significant.

Micro Macro Macro Macro

Precision Precision Recall F1

PreSizE 50.8% 51.8% 47.1% 47.7%

Attention 38.0% 33.3% 19.9% 23.2%

Attention+ 47.4% 32.2% 24.1% 25.4%

SFNet 40.3% 47.9% 43.4% 44.0%

PMCV 40.3% 24.4% 19.7% 20.4%

MRV 36.3% 23.0% 18.6% 19.1%

MCV 21.1% 4.4% 5.2% 3.7%

more than enough (a detailed evaluation is provided in Section 4.3).

Architecture. Unless otherwise stated, we use a hidden layer di-

mension of 3 = 512 in all embedding and attention layers; and set

the Transformer feed-forward dimension to 4×3 . We use GELU ac-

tivation both in the Transformer hidden layers and in the classifier

layers; except in the final layer, where we use softmax to produce

a probability-like distribution over class predictions. Both the item

and history Transformers use 4 stacked Transformer layers and 8

attention heads. The final classifier module has hidden dimensions

of (2×3,3,3/2, =) where = = 286 is the number of output classes.

Training. We use Pytorch4 for all our experiments. We use the

Adam optimizer [10] for Stochastic Gradient Decent (SGD) opti-

mization and mini-batches of 128 samples. All optimizer hyper-

parameters are left at their Pytorch defaults; except the learning

rate, which we empirically set to an initial value of 10e-5. To con-

trol our learning rate during training, every 1K training iterations

we measure our model’s performance on a 15K sample of the vali-

dation set. Whenever the loss does not decrease for 10 consecutive

measurements, we decrease the learning rate by a factor of 2. We

halt training when the learning rate drops below 10e-7.

4.1.4 Evaluation Protocol and Metrics. We split our dataset over

time: we reserve the last 5 days in the data as a test set, the 5 days

prior to that as a validation set and the rest are used as a training set.

We train PreSizE and the baselines on the training set and use the

validation set to control the learning rate. We evaluate prediction

performance using standard multi-class classification metrics. We

consider micro and macro-averaged versions of precision, recall

and F1 metrics. Micro averaged metrics average over all instances

and are, therefore, less sensitive to smaller categories. On the other

hand, macro averaged metrics are averaged over categories, giv-

ing more weight to smaller categories. Due to class symmetry in

multi-class classification, the micro averaged precision, recall and

F1 metrics are equal and hence we only report micro precision.

To evaluate statistical significance, we use paired Student’s t-test

(p<0.05) for micro precision and paired bootstrap test (p<0.05) for

the macro metrics [5]. We further apply Bonferroni correction in

all cases.

4https://pytorch.org/

4.2 Size Prediction Results

Wenext describe themain results of comparing PreSizE to the base-

lines, analyzing the results on three key dimensions: Departments

and Item Types, Generalization to Unseen Items and Account Types.

4.2.1 PreSizE vs. Baselines. We compare the performance of Pre-

SizE to the baselines in Table 2. Overall, PreSizE significantly out-

performs all baselines by wide margins. Compared to the next best

performing baseline, PreSizE has gained at least +7% better perfor-

mance in all quality metrics. In particular, we find both SFNet [16]

and the Attention [8] baselines, which rely on learning implicit

features of either buyers or items, do not perform well on our data.

On the other hand, our modified Attention baseline (Attention+)

shows that, by replacing the sparse item ids with category ids, this

baseline can achieve a much better generalization. This suggests

that sparsity is indeed amajor considerationwith our data and that

using explicit features, such as category, can address this problem.

4.2.2 Departments and Item Types. Large e-commerce platforms,

such as eBay, host extremely diverse catalogs of items and cater to

diverse groups of buyers which do not necessarily follow similar

patterns. To gain a deeper insight into the challenges of size person-

alization, we would like to break down and examine our data along

multiple axes. We consider two such axes: item departments and

item types. We classify items to four departments: Men’s, Women’s,

Unisex and Kid’s, where the last is anywhere from toddlers to

youth. In addition, we classify items by five types: Tops, Bottoms,

Dress/Skirt, Footware and Other.

4.2.3 Generalization to Unseen Items. Given the aforementioned

classification, a second question arises: can PreSizE make size pre-

dictions for novel (unseen) items? Specifically, an interesting ques-

tion is whether PreSizE can generalize from one item type to an-

other, and from one department to another. To evaluate this, we

separate cases where a buyer bought an item from a ’Novel’ de-

partment or item type which she did not purchase from before,

forcing our model to generalize from one type of items to a differ-

ent one (e.g., from ‘shoe size’ to ‘shirt size’, or from Men’s

to Women’s). We contrast these from ’Observed’ cases, where the

buyer did purchase an item from the same department or item type.

We summarize PreSizE and baselines performance over these

item groups in Table 3. Looking at the ’Observed’ column, we can

see that while PreSizE consistently outperforms all baselines, not

all departments and item types behave the same. Specifically, Kid’s

items are significantly more challenging than all adult items, while

Men’s sizes are the least challenging. We further observe a signifi-

cant variance among item types, where Tops are the least challeng-

ing and Footware are the most. Such differences can be attributed

to the nature of the data itself, where some categories (e.g., Shoes)

are more nuanced than others (e.g., Shirts).

Looking at the ’Novel’ column, we see that, the performance of

PreSizE and all baselines significantly drops in these challenging

situations. However, PreSizE significantly outperforms the base-

lines in almost all cases. In particular, PreSizE outperforms the

non-personalized MCV heuristic, suggesting that the former can

indeed generalize to unseen purchased categories. A notable obser-

vation is furthermade for Footware items, where PreSizE struggles

to generalized from other clothing items into footware items, but



Table 3: Evaluation by item categories, on observed and novel item types. Per department and item type, the underlined and

bold values denote the best results for the observed and novel cases, respectively. * denotes statistically significant results.

PerSizE Attention Attention+ SFNet PMCV MCV

Observed Novel Observed Novel Observed Novel Observed Novel Observed Novel Observed Novel

Mens 57%* 31.4%* 43.5% 20.5% 53.5% 25.7% 45.4% 31.9%* 45.4% 24.1% 24.9% 23.9%

Womens 49.8%* 29.7%* 37.5% 17.5% 47.2% 26.4%* 39.1% 27.7%* 40.6% 22.0% 20.1% 21.9%

Kids 41.9%* 26.2%* 24.1% 7.6% 38.4% 19.8% 29.3% 22.0%* 29.7% 14.5% 9.0% 13.9%

Unisex 56.4%* 51.0%* 42.0% 32.8% 45.8% 32.7% 50.9%* 46.7%* 41.0% 25.3% 25.0% 23.1%

Tops 57.4%* 35.7%* 51.3% 22.6% 56.3%* 34%* 46.7% 27.7% 51.2% 17.6% 25.8% 25.3%

Bottoms 52.2%* 29.2%* 29.2% 15.4% 49.4% 22.2% 35.5% 24.2% 42.1% 14.1% 10.3% 11.5%

Dress/Skirt 46.7%* 32.3%* 39.5% 23.9% 44.6% 28.2%* 36.0% 24.3% 39.6% 20.5% 17.5% 16.5%

Footware 49.4%* 19.1%* 16.7% 2.1% 48.8%* 20.3%* 29.2% 16.7%* 37.3% 4.0% 16.0% 14.7%*

Table 4: Size prediction performance by account types. All bold results are statistically significant.

PreSizE Attention Attention+ SFNet PMCV MCV

Single Gender

Accounts

Men’s Items 58.2% 45.1% 53.9% 46.8% 45.7% 24.6%

Women’s Items 49.8% 37.3% 46.6% 38.7% 40.0% 19.5%

Mixed Gender

Accounts

Men’s Items 53.6% 39.1% 50.5% 42.4% 42.9% 25.0%

Women’s Items 48.0% 35.1% 45.7% 38.3% 39.0% 19.6%

Single Age Group

Accounts

Adult Items 52.4% 39.9% 49.0% 41.9% 42.1% 22.0%

Kids Items 43.6% 31.7% 38.5% 31.3% 31.0% 7.9%

Mixed Age Group

Accounts

Adult Items 49.0% 34.6% 45.9% 38.1% 38.6% 22.4%

Kids Items 41.4% 22.2% 38.2% 28.9% 29.2% 9.4%

still manages to perform some personalization and beats the non-

personalized MCV heuristic by 4.4%. Another interesting observa-

tion is made for the Attention baseline, which performs poorly on

Novel cases with the lack of explicit features. On the other hand,

those baselines that do use explicit features (i.e., Attention+, SFNet)

performmuch better. These results demonstrate the importance of

using explicit features to improve generalization in such settings.

4.2.4 Account Types. Next, we examine our data from the target

audience demographic perspective and divide it by apparent gen-

der and age group of buyer accounts. We define apparent gen-

der and age group of an account in terms of the item categories

in its purchase history. ‘Kids’ accounts are, therefore, accounts

purchasing only from the kids category; while ‘Adult’ men and

women accounts are accounts purchasing only from men’s and

women’s categories, respectively. Accounts purchasing from both

men’s and women’s categories are termed ‘Mix-Gender’; while ac-

counts purchasing from both kids and adults categories are termed

‘Mixed-Age Group’. We summarize PreSizE and baselines perfor-

mance by account and item categorizations in Table 4. Overall, Pre-

SizE performs well on all account categorizations. As we would

expect, PreSizE performance degrades for mixed accounts, yet it

still performs well in all cases and outperforms all baselines. We

attribute PreSizE’s success to its ability to attend to specific pur-

chases within the buyer’s history based on features such as cate-

gory and gender.

4.3 Ablation Study

We next perform an extensive set of experiments and ablations of

PreSizE to identify which components and features contribute the

most to it’s performance. Throughout this section, all results are

obtained by training each model five times using different seeds

to randomly initialize model weights and reporting the average

performance.We do this in order to reduce the variance of reported

numbers, as we found that our results may vary by as much as 1%

for different seeds.

4.3.1 Embedding Size. We vary the embedding dimension of the

model, which effectively determines its size in terms of parame-

ter count. We report results in Table 5, where we can clearly see

that, increasing the embedding dimension significantly improves

PreSizE performance. In particular, we find large improvements in

Macro F1, as the embedding dimension increases. This shows that

larger models are particularly better at fitting less frequent cate-

gories.

4.3.2 Purchase History Length. We plot in Figure 4 the impact of

the number of items in a buyer’s history on model performance.

We can see that, PreSizE can identify the correct size with 40%

precision using as little as a single item in the buyer’s purchase

history. However, precision improves significantly with more his-

tory items and peaks at around 15 items. Comparing PreSizE to

baselines, and especially Attention+, shows that PreSizE performs

better both overall and particularly when the buyer has less items

in her purchase history.
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Figure 4: PreSizE performance by history length

4.3.3 Component Analysis. We continue to perform an ablation

by removing different parts of PreSizE and observing the impact

on its performance. Due to the large number of models fitted in

this experiment, and to reduce cost and resource usage, we use a

lowered embedding dimension size of 128 throughout the experi-

ment.

Table 5: PreSizE performance by embedding dimension.

Model parameter counts (model size) are noted as well.

Embedding

size

Parameter

Count

Micro

Precision

Macro

F1

32 1.1M 44.5% 20.3%

64 2.5M 47.8% 34.7%

128 6M 49.2% 41.0%

256 16M 50.3% 45.3%

512 48M 50.8% 47.7%

We report the results of the ablation in Table 6. First, we ob-

serve that, rich context features are essential for good performance.

Moreover, removing the temporal embeddings degrades the perfor-

mance by 0.5%. This suggests that, PreSizE can (at least partially)

model temporal changes in size preferences.

Among the rest of our features, Category, Brand and Style are

the most impactful. In particular, using Category alone achieves

46.2% and the rest of the features amounts to 3% additional im-

provement. Yet, removing any single feature does not degrade per-

formance by much. This suggests that, no single feature contains

information that cannot be mostly extracted from other features

(e.g., Department and Gender can be deduced from the Category).

4.4 Using Size Prediction for Similar Items
Recommendation

We conclude this section by demonstrating the merits of utilizing

PreSizE’s derived size prediction features (see again Section 3.5) for

enhancing a real downstream eBay recommendation service. To

this end, we perform an offline evaluation of eBay’s similar items

recommendation service, focusing on the Fashion domain.

Most e-commerce websites have an item page containing amod-

ule of Similar Itemswhich recommends items that are similar to the

Table 6: Ablation study of PreSizE, where we remove each

part/feature of the model and observe effects on its perfor-

mance.Numbers in parenthesis denote the opposite: PreSizE

performance when removing all features but one.

Part of Model/Feature removed Micro-Precision

All Features (No Features) 49.2% (36.4%)

– All Context Features 36.5% (-)

– Temporal Embedding 48.7% (-)

– Category 48.3% (46.2%)

– Brand 48.8% (39.2%)

– Style 48.9% (42.3%)

– Occasion 49.1% (36.7%)

– Country of Manufacture 49.1% (36.3%)

– Fabric Type 49.1% (37.4%)

– Department 49.2% (37.7%)

– Gender 49.2% (36.5%)

– Material 49.2% (37.5%)

– Type 49.2% (40.9%)

– Title 49.2% (36.4%)

– Brand-Type 49.3% (36.7%)

– Season 49.3% (36.2%)

featured item. The existing model for similar items recommenda-

tion on the item page at eBay considers hundreds of buyer-based,

seller-based and item-based features. We next propose to extend

the buyer-based features with the additional set of size prediction

features (total score,best score and best rank). The recommender’s

model is optimized for item purchases, ranking higher items that

are more likely to be purchased by the buyer.

We next compare the performance of the similar items recom-

mendation model when adding the size prediction features against

the existing model. To further assess the advantage of using a com-

plex model such as PreSizE, we compare PreSizE-based features to

similar features extracted using an effective, yet simpler, heuristic.

Specifically we extract the same features from the PMCV baseline,

which was shown in Section 4.2.1 to be an effective baseline, and

compare the same item recommendation model trained with these

features. We sample from two weeks of item impressions data be-

tween 10/17/2020 and 10/30/2020 from the logs of eBay’s similar

items recommendation module, one for training and one for held-

out evaluation. The size prediction features are calculated for each

buyer in our data based on her history of purchases in the last year

prior to the two-week experiment period. We consider several rec-

ommendation quality metrics. The first is the relative gain in Sale

Rank: the average rank of the top purchased item in the results set.

The two other metrics are the relative gain in Purchase-Through

Rate (PTR) and Normalized Discounted Cumulative Gain (NDCG),

both measured considering the top-5 results.

We report the results of our evaluation in Table 7. As we can ob-

serve, using size prediction features derived from PreSizE provides

significantly better recommendation quality then using those de-

rived from PMCV.



Table 7: Gain in item recommendation quality with the

PMCV baseline size features and PreSizE features compared

to not using any size features

Method Sale Rank PTR@5 NDCG@5

PMCV Features +0.73% +0.49% +0.41%

PreSizE Features +2.10% +2.02% +1.57%

5 CONCLUSIONS

We proposed PreSizE, a deep learning framework designed to pre-

dict buyer’s size preference in e-commerce. PreSizE uses Trans-

formers for content-based and sequence-based size prediction. To

validate PreSizE, we performed a large array of experiments on e-

commerce data, showing that its performance transcends that of

state-of-the-art baselines. We attribute PreSizE’s success to effec-

tive usage of explicit content-based features, and support this by

an extensive ablation experiment.

We further demonstrated the importance of size prediction in

improving downstream item recommendation services in e-commerce.

Specifically, we used PreSizE’s size predictions as features to im-

prove an existing learning-to-rank item recommendation service

at eBay. We showed that, these features can significantly improve

the existing service’s performance as well as outperform size fea-

tures generated by a strong heuristic baseline.
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